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Introduction

Biomedical research is seldom done with entire populations 
but rather with samples drawn from a population. There 
are various strategies for sampling, but, wherever feasible, 
random sampling strategies are to be preferred since they 
ensure that every member of the population has an equal 
and fair chance of being selected for the study. Random 
sampling also allows methods based on probability theory 
to be applied to the data.

Although we work with samples,  our goal is  to 
describe and draw inferences regarding the underlying 
population. Values obtained from samples are referred to 
as ‘sample statistics’ which we have to use to garner idea 

of corresponding values in the underlying population, that 
are referred to as ‘population parameters’. But how do we 
do this? If we are doing ‘census’ type of studies, then the 
measured values are directly the population parameters since 
a census covers the entire population. However, if we are 
studying samples, then what we have in our hand at study 
end are the sample statistics. If we have a large enough and 
adequately representative sample, it is logical to presume 
that the sample statistics would be close to the ‘true values’, 
that is the population parameters, but they would probably 
not be identical to them. Strictly speaking, without doing 
a census it is not possible to get true population values. 
Practically speaking, it is possible to use a sample statistic 
and estimates of error in the sample to get a fair idea of 
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the population parameter, not as a single value, but as a 
range of values. This range is the confidence interval (CI).  
How well the sample statistic estimates the underlying 
population value is always an issue. The CI addresses this 
issue because it provides a range of values which is likely to 
contain the population parameter of interest.

The CI is a descriptive statistics measure, but we can use it 
to draw inferences regarding the underlying population (1). 
In particular, they often offer a more dependable alternative 
to conclusions based on the P value (2). They also indicate 
the precision or reliability of our observations—the narrower 
the CI of a sample statistic, the more reliable is our estimation 
of the underlying population parameter. Wherever sampling 
is involved, we can calculate CI. Thus we can calculate CI 
of means, medians, proportions, odds ratios (ORs), relative 
risks, numbers needed to treat, and so on. The concept of 
the CI was introduced by Jerzy Neyman in a paper published  
in 1937 (3). It has now gained wide acceptance although 
many of us are not quite confident about it (4). To be fair it 
is not an intuitive concept but requires some reflection and 
effort to understand, calculate and interpret correctly. In this 
article we will look at these issues.

Meaning of CI

The CI of a statistic may be regarded as a range of values, 
calculated from sample observations, that is likely to contain 
the true population value with some degree of uncertainty.
Although the CI provides an estimate of the unknown 
population parameter, the interval computed from a 
particular sample does not necessarily include the true 
value of the parameter. Therefore, CIs are constructed 
at a confidence level, say 95%, selected by the user. This 

implies that were the estimation process to be repeated over 
and over with random samples from the same population, 
then 95% of the calculated intervals would be expected 
to contain the true value. Note that the stated confidence 
level is selected by the user and is not dependent on the 
characteristics of the sample. Although the 95% CI is by far 
the most commonly used, it is possible to calculate the CI 
at any given level of confidence, such as 90% or 99%. The 
two ends of the CI are called limits or bounds. 

CIs can be one or two-sided. A two-sided CI brackets the 
population parameter from both below (lower bound) and 
above (upper bound). A one-sided CI provides a boundary for 
the population parameter either from above or below and thus 
furnishes either an upper or a lower limit to its magnitude.

Calculation of CIs

Formulas for calculating CIs take the general form:
CI = Point estimate ± Margin of error

Point estimate ± Critical value (z) × Standard error of point 

estimate

The point estimate refers to the statistic calculated from 
sample data. The critical value or z value depends on the 
confidence level and is derived from the mathematics of the 
standard normal curve. For confidence levels of 90%, 95% 
and 99% the z value is 1.65, 1.96 and 2.58, respectively. 
The standard error depends on the sample size and the 
dispersion in the variable of interest.

Calculation of the CI of the mean is relatively simple. 
Here the formula is:

CI = Sample mean ± z value × Standard error of mean (SEM)

Sample mean ± z value × (Standard deviation/√n)

If we are calculating the 95% CI of the mean, the  
z value to be used would be 1.96. Table 1 provides a listing of  
z values for various confidence levels. The margin of error 
depends on the size and variability of the sample. Naturally, 
the error will be smaller if the sample size (n) is large or the 
variability of the data [standard deviation (SD)] is less and 
this is reflected in the SEM.

Ideally the SD used in the calculation should be the 
population SD. However, this is often unknown and if we are 
dealing with a reasonably large (say n >100, or at least >30)  
random sample, then the sample SD can be used as a fair 
approximation of the population SD. If the sample is small 
and one has to rely on the sample SD, then this requires 
derivation of the CI using the t distribution rather than 
the z value from the normal distribution. In this situation, 
the z value is to be replaced with the appropriate critical 

Table 1 Critical (z) values used in the calculation of confidence 
intervals

Confidence level
Critical (z) value to be used in confidence 

interval calculation

50% 0.67449

75% 1.15035

90% 1.64485

95% 1.95996

97% 2.17009

99% 2.57583

99.9% 3.29053
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value of the t distribution with (n–1) degrees of freedom. 
Note that the Student’s t distribution, resembles the normal 
distribution, although its precise shape depends on the 
sample size. The required t value can be found from a t 
distribution table included in most statistical textbooks. For 
example, if the sample size is 25, the critical value for the 
t distribution that corresponds to a 95% confidence level 
with 24 degrees of freedom, is 2.064.

Let us now work out an example. The mean systolic 
blood pressure (SBP) and diastolic blood pressure (DBP) of  
72 randomly selected chest physicians aged over 50 is 134 
and 88 mmHg, with SD of 5.2 and 4.5 mmHg. What is the 
95% CIs for the blood pressure readings?

Here  we  wi l l  cons ider  the  sample  SD as  f a i r 
approximation to the population SD. Therefore:

95%CI of SBP 134 1.96 (5.2 / 72) 134 1.20 . .,132.8 to 135.2 mmHg

95%CI of DBP 88 1.96 (4.5 / 72) 88 1.04 . ., 86.9 to 89.0 mmHg

i e

i e

= ± × = ±

= ± × = ±

Thus the chest physicians appear to be non-hypertensive 
at present although they still need to keep a regular check 
on their blood pressure readings.

Unlike numerical variables, categorical variables are 
summarized as counts or proportions, and we will now deal 
with CI of a proportion. The formula for this is a bit more 
intimidating, but is still manageable for manual calculation.

CI = Sample proportion (p) ± z value × Standard error of proportion

(1- )pp z value p
n

 ± ×   

Let us work through an example. A radiology resident has 
done a small observational study to find out the sensitivity 
and specificity of pleural effusion detected on digital chest 
X-rays (CXR) in predicting the risk of malignancy among 
subjects presenting with suggestive clinical findings. Her 
data is summarized in Table 2.

The sensitivity of his diagnostic modality is [63/(63+25)] 
×100, i.e., 71.59%, while specificity is [53/(33+53)] 
×100, i.e., 61.63%; The 95% CI for the sensitivity would be: 

0.7159 1.96 [0.7159(1 0.7159) /174] 0.7159 0.0670 . ., 64.89 to 78.29%i e± × − = ±

And the 95% CI for the specificity would be: 
0.6163 1.96 [0.6163(1 0.6163) /174] 0.6163 0.0723 . ., 54.40 to 68.86%i e± × − = ±

In this same example, the odds of malignancy being 
present when pleural effusion is detected on CXR is 63/33, 
i.e., 1.9091, while the odds when pleural effusion is absent 
is 25/53, i.e., 0.4717. Therefore the OR for detecting 
malignancy when pleural effusion is present, compared to 
when it is absent, would be 1.9091/0.4717, i.e., 4.047.

Calculation of the 95% CI of the OR requires a more 
complicated formula, where we first derive the natural 
logarithm (log to base e, or ln) of the sample OR and then 
calculate its standard error. From this we derive the two 
confidence limits of the ln(OR), and then take their antilog 
to derive the 95% CI of the OR. 

The formula is: 

ln(OR) 1.96 SE(ln(OR))e ± ×

where, 

Thus in the above example ln(OR) would be ln(4.047), i.e., 
1.3980. The SE of ln(OR) would be  

, i.e., 0.3241. The 95% confidence limits for 
ln(OR) would be 1.3980±1.96×0.3241=1.3980±0.6352, i.e., 
0.7628 to 2.0332.

Taking antilog of these two boundaries, the 95% CI of 
OR of 4.047 in this case would be 2.144 to 7.638. Note that 
since this 95% CI of the OR does not span the value 1, it 
implies that a pleural effusion detected by CXR in a patient 
with clinical examination findings suggestive of malignancy 
is approximately 2.1 to 7.6 times as likely to indicate 
malignancy than when it is not detected.

The reason why we resort to such an apparently complicated 
formula is that ORs are not normally distributed. They 
tend to be skewed towards the lower end of possible values. 
As a result, we must take the natural log of the OR and first 
compute the confidence limits on a logarithmic scale, and 

Table 2 Radiology resident’s cross-tabulation of pleural effusion vis-a-vis chest malignancy data

Pleural effusion on chest X-ray
Final diagnosis of malignancy

Present Absent Row totals

Present 63 33 96

Absent 25 53 78

Column totals 88 86
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then convert them back to the normal OR scale. The same 
applies to relative risks and other sample statistics that are 
skewed in this manner.

Calculating CIs for distribution free statistics

From the examples above, it should be evident that CI take the 
general form of Point estimate ± Margin of error, where the 
margin of error is calculated by multiplying a critical value selected 
as per the required confidence limits with the standard error.

Standard errors cannot be calculated for distribution 
free statistics. Nevertheless, CIs can be calculated and have 
the same interpretation, that is they will present a range of 
values with which the true population value is compatible. 
In this case, the confidence limits are not necessarily 
symmetric around the sample estimate and are given 
by actual values in the sample that are chosen from the 
applicable formula.

The formula for calculating the CI of the median is:

1.96 1.961
2 2 2 2
N N N nth ranked value to th ranked value− + +

For example, if there are 100 values in a sample data 
set, the median will lie between 50th and 51st values when 
arranged in ascending order. Applying the formula shown 
above, the lower 95% confidence limit is indicated by  
40.2 rank ordered value, while the upper 95% confidence limit 
is indicated by 60.8 rank ordered value. Since there are no actual 
40.2 and 60.8 ranked values, we choose the ranks nearest to these 
and values of these ranks then provide the approximate 95% CI 
for the median. For the 100 value series, this will therefore be 
the range indicated by the 40th to 61st rank ordered value.

For large samples, the CI for the median and other 
quartiles can be determined on the basis of the binomial 
distribution. You can see examples online (5).

Factors affecting the width of the CI

The width of the CI indicates the utility of our estimation 
of the population parameter. Suppose the weather forecaster 
uses the concept of the 99% CI to declare that tomorrows 
maximum temperature is going to be anywhere between  
1 to 50 ℃. It is extremely unlikely that he or she will be 
wrong but for you and me it would be utmost perplexing as 
to what to wear outdoors tomorrow. On the other hand if he 
says that the range is likely to be 20 ℃ to 30 ℃ on the basis of 
the 95% CI, then he has more chance of being wrong but it 
is easier for us to decide how we dress tomorrow. The factors 

affecting the width of the CI include the desired confidence 
level, the sample size and the variability in the sample. 

The width of the CI varies directly with the confidence 
level. A 99% CI would be wider than the corresponding 
95% CI from the same sample. This stands to reason, since 
a larger likelihood of containing the true population value 
would lie with the wider interval.

A larger sample size expectedly will lead to a better estimate 
of the population parameter and this is reflected in a narrower 
CI. The width of the CI is thus inversely related to the sample 
size. In fact, required sample size calculation for some statistical 
procedures is based on the acceptable width of the CI. 

Variability in a random sample directly influences the width 
of the CI. A larger spread implies that it is more difficult to 
reliably estimate population value without large amounts of data. 
Thus as the variability in the data (often expressed as the SD)  
increases, the CI also widens.

Practical use of the CI

In descriptive statistics, CIs reported along with point 
estimates of the variables concerned, indicate the reliability 
of the estimates. The 95% confidence level is often used, 
though the 99% CI are used occasionally. At 99%, the width 
of the CI will be larger but it is more likely to contain the true 
population value, than the narrower 95% CI. Bioequivalence 
testing makes use of the 90% CI. In such studies, we can 
conclude that two formulations of the same drug are not 
different from one another if the 90% CI of the ratios for 
peak plasma concentration (Cmax) and area under the plasma 
concentration time curve (AUC) of the two preparations  
(test vs. reference) lies in the range 80–125%.

Conflict between clinical importance and statistical 
significance is an important issue in biomedical research. 
Clinical importance is best inferred by looking at the effect 
size, that is how much is the actual change or difference. 
However, statistical significance in terms of P only suggests 
whether there is any difference in probability terms (6). One 
way to combine statistical significance and effect sizes is to 
report CIs. If a corresponding hypothesis test is performed, the 
confidence level is the complement of the level of significance, 
that is a 95% CI reflects a significance level of 0.05, while at 
the same time providing an estimate of the ‘true’ value. Indeed, 
if there is no overlap on comparing 95% CI surrounding point 
estimates of the outcome variable in different groups, once 
can conclude that statistically significant difference exists. On 
the other hand, even if there is small overlap, the difference 
between groups may not be clinically significant, irrespective 
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of the P value. Thus stating the CI shifts the interpretation 
from a qualitative judgment about the role of chance to a 
quantitative estimation of the biologic measure of effect (7).

Of late, clinical trials are being designed specifically as 
superiority, non-inferiority or equivalence studies. The 
conclusions from these alternative trial designs are based 
on CI values rather than the P value from intergroup 
comparison (8). CI around the outcome point estimate 
for the test drug must fall wholly within a predefined 
equivalence margin on both sides of the line of no 
difference for establishing equivalence. For establishing 
non-inferiority, the lower bound of the 95% CI for the test 
drug must not cross the non-inferiority margin set a priori. 
For establishing superiority, the lower bound of the 95% CI 
for the test drug must lie beyond the line of no difference, 

while the upper bound extends beyond the superiority 
margin set a priori. Figure 1 summarizes these situations 
graphically. Selection of these margins has to be done with 
due care based on clinical judgment.

The concept of CIs and confidence levels are also used 
in the calculation of sample size for prevalence surveys. The 
margin of error selected by the surveyor determines the 
acceptable deviation between the prevalence in the surveyed 
section of the population and the prevalence in the entire 
population. Thus, the margin of error implies a CI. The 
confidence level selected indicates how often the percentage of 
the population that has the condition of interest is likely to lie 
within the boundaries decided by the margin of error. Table 3  
indicates how required sample size for population surveys 
varies with acceptable margin of error and confidence level.

Figure 1 The positioning of 95% confidence limits around the point estimate in the test intervention group to establish non-inferiority, 
equivalence or superiority in clinical trials. The line of no difference is indicated by zero; negative delta indicates the non-inferiority margin or 
the lower bound of the equivalence margin, while positive delta indicates upper bound of the equivalence margin or the superiority margin.

Control better    0   Test drug better

Non-inferiority Equivalence Superiority

Control better    0   Test drug better Control better    0   Test drug better

− ∆ − ∆ + ∆ + ∆

Table 3 Sample size required for surveys

Estimated  
population size

Margin of error

Confidence level 95% Confidence level 99%

5% 2.5% 1% 5% 2.5% 1%

100 80 94 99 87 96 99

500 217 377 475 285 421 485

1,000 278 606 906 399 727 943

10,000 370 1332 4899 622 2098 6239

100,000 383 1513 8762 659 2585 14227

500,000 384 1532 9423 663 2640 16055

1,000,000 384 1534 9512 663 2647 16317

Sample size is larger for a lower margin of error or higher level of confidence. Once the estimated population size is very large (>100,000), 
the sample size is not changing much.
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Misconceptions regarding the CI

A 95% CI does not mean that 95% of the sample data lie 
within that interval. A CI is not a range of plausible values 
for the sample, rather it is an interval estimate of plausible 
values for the population parameter.

It is natural to interpret a 95% CI as a range of values with 
95% probability of containing the population parameter. 
However, the proper interpretation is not that simple. The 
true value of the population parameter is fixed, while the 
width of the 95% CI based on a random sample will also vary 
randomly. If we take repeated random samples of equal size 
from the population, we will get a corresponding number of 
95% CI values not all of which will contain the population 
parameter—in fact only 95% of them can be expected to 
contain the population parameter value. Thus the CI may not 
always give an idea of the population parameter.

Selection of the acceptable confidence level is arbitrary. We 
often use the 95% CI in biological sciences, but this is a matter 
of convention. A much higher level is often used in the physical 
sciences. For instance the six sigma concept, the quality 
improvement program that Motorola originated, and which 
is now popular in many manufacturing companies, utilizes 
a confidence level of 99.99966% (9). The engineers want to 
eliminate all risk of manufacturing poor-quality products and 
therefore work at this level of precision.

Finally, it is worthwhile to remember that the concept 
of the CI was introduced to provide an answer to the 
vexing issue in statistical inference of how to deal with 
the uncertainty inherent in results derived from data that 
represent randomly selected subset of a population. There 
are other answers, notably that provided by Bayesian 
inference in the form of credible intervals. Calculation of the 
conventional CI depends on set rules that ensure that the 
interval determined by the rule will include the true value of 
the population parameter. This is the so called ‘frequentist’ 
approach. The Bayesian approach offers intervals that 
can, subject to acceptance of interpretation of ‘probability’ 
as Bayesian probability, be interpreted as meaning that 
the specific interval calculated from a given dataset has a 
particular probability of including the true value, conditional 
on the particular situation (10). Bayesian intervals treat their 
bounds as fixed and the estimated parameter as a random 
variable, whereas conventional approach treats confidence 
limits as random variables and the population parameter as 
a fixed value. Unlike the Bayesian method, the frequentist 
method of computing CIs does not make use of any other 
prior information regarding the location of the population 

parameter. Thus, there is a philosophical difference between 
the two approaches which we can address at a later stage.
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